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We present numerical scaling results for tile energy level statistics in orthogonal 
and symplectic tight-binding Hamiltonian random matrix ensembles defined on 
disordered two and three-dimensional electronic systems with and without spin- 
orbit coupling (SOC), respectively. In the metallic phase for weak disorder the 
nearest level spacing distribution function P(S), the number variance ((~N)2~, 
and the two-point correlation function K2(e) are shown to be described by the 
Gaussian random matrix theories. In the insulating phase, for strong disorder, 
the correlations vanish for large scales and the ordinary Poisson statistics is 
asymptotically recovered, which is consistent with localization of the corre- 
sponding eigenstates. At the Anderson metal-insulator transition we obtain new 
universal scale-invariant distribution functions describing the critical spectral 
density fluctuations. 

KEY WORDS: Anderson localization; spin-orbit coupling; mobility edge; 
random matrix theory; level statistics. 

1. I N T R O D U C T I O N  

The fundamenta l  p rob lem of  electronic s t ructure  in d i sordered  q u a n t u m  
systems is c o m m o n l y  s tudied  within the t igh t -b ind ing  approx ima t ion .  ~t~ 
The co r re spond ing  stat is t ical  t igh t -b ind ing  r a n d o m  mat r ix  ensemble  
( T B R M E )  has been widely s tudied  since the rea l iza t ion  made  by Anderson  ~2~ 
tha t  e igenvectors  m a y  show exponen t ia l  decay  proper t ies  in the presence of  
disorder .  This  is the wel l -known p h e n o m e n o n  of  Anderson  local iza t ion  
which occurs  via the d i so rde r - induced  m e t a l - i n s u l a t o r  t ransi t ion.  The  
Ander son  "de loca l i za t ion- loca l i za t ion  t rans i t ion  is expected to occur  in 
th ree -d imens iona l  non in te rac t ing  d i so rdered  systems ~3> and in two d imen-  
sions only when s t rong  s p i n - o r b i t  coupl ing  (SOC)  is also present.  ~4~ In this 
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paper we shall work from the viewpoint of the Hamiltonian random matrix 
statistical approach by considering two kinds of tight-binding random 
matrices, both invariant under time reversal with and without SOC, corre- 
sponding to the orthogonal and the symplectic universality classes, respec- 
tively. ~31 Our purpose is to characterize the statistical eigenvalue correla- 
tions and fluctuations, to identify the common features of the two quantum 
phase transitions and connect our results to the more general field of 
random matrix theories. 

It is well established by now that the statistical properties of the 
energy spectra for diffusing electrons in the disordered metallic phase, 
studied within the TBRME, consist of correlated eigenvalues which resemble 
those found from appropriate Gaussian random matrix ensembles. ~5' 61 This 
description is usually referred as the Wigner-Dyson random matrix theory 
(RMT) ~5'6) and is also believed to apply to nonrandom quantum systems 
whose classical dynamics is chaotic. ~7~ The correlations in this case arise 
because the eigenfunctions are delocalized, overlapping with each other, so 
that the corresponding eigenvalues exhibit level repulsion, giving a smooth 
and rigid spectrum. This kind of statistics is also known as a mesoscopic 
description since is it responsible for the universal mesoscopic conductance 
fluctuations in disordered metals. ~8~ In the insulating phase the eigenfunc- 
tions are instead localized nonoverlapping in space and imply uncorrelated 
spectra with randomly distributed eigenvalues obeying normal Poisson 
statistics. The analogy of delocalization (metal) to Wigner-Dyson and 
localization (insulator) to Poisson statistics is quite rigorous and has been 
exploited to define the mobility edge as the point in the energy spectrum 
where the eigenvalues change their statistics. ~9 ~1 

The simplest quantity which can be used to unravel the statistical 
localization properties of these systems is the nearest-level spacing distri- 
bution function P(S), which is defined so that P(S) dS measures the prob- 
ability of having a spacing in the interval [S, S +  dS]. In order to have 
dimensionless quantities the spacing S is measured in units of the mean 
level spacing ( S )  = A. For delocalized eigenfunctions P(S) obeys the well- 
known Wigner surmise, which in the orthogonal case takes the form P(S) = 
(n/2) Sexp[ - (n/4)  S 2 ] and in the symplectic case is P(S)= (218/36n 3) S 4 
exp[-(64/9n) S-']. These laws are derived from the Gaussian orthogonal 
ensemble (GOE) and the Gaussian symplectic ensemble (GSE), respec- 
tively. ~5~ For localized eigenstates both expressions cross over to the usual 
Poisson law P(S)= exp(-S).  The main difference between the Wigner and 
the Poisson laws lies in the fact that for short separations S the Wigner 
surmise vanishes, indicating level repulsion with the first ( f l= 1) and the 
fourth power (/~=4) of S for the orthogonal and the symplectic univer- 
sality classes, respectively. The parameter fl is a universality class index 
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which reduces to zero in the Poisson case since P(S) reaches its maximum 
value for S = 0. A very interesting question also concerns the nature of the 
P(S) function at the Anderson transition. The existence of a new universal 
critical statistics, intermediate between Wigner and Poisson, was first 
suggested and demonstrated in the pioneering work of ref. 10. The critical 
P(S) distribution was computed for the orthogonal case and in general is 
shown to be a scale invariant function which displays Wigner-like behavior 
(oc S/~) for small S falling off as a stretched exponential oc exp ( -AS~) ,  
A = const., for large S, where the exponent cc is not far from unity (see also 
ref. 11), so that P(S)  for very large S is close to a simple exponential 
Poissonic behavior, c m~ 

In this paper we consider the kind of spectral correlations and fluctua- 
tions which appear in both the metal and insulator as well as at the 
mobility edge in two- and three-dimensional disordered systems which 
display an Anderson transition. We are also able to evaluate long-range 
correlations between eigenvalues, which give extra information on the 
spectral fluctuations not revealed by the P(S) function. Therefore, in order 
to have a more complete description apart from P(S) we extend our studies 
to the more fundamental statistical measures of the number variance 
<(fiN)-'> and the density-density correlation function K2(e). The number 
variance ((fiN) 2) measures the fluctuations due to disorder in the number 
of levels within a given band of width E, with a mean number of levels 
( N ) .  According to the Wigner-Dyson RMT for the metal ((fiN) 2) is 
expected to vary logarithmically with ( N )  as 

( ( ~ ; N ) 2 )  = 2___; [ I n ( D r ( N )  ) + 2.18] 

and 

((fiN) z) =~5~_, [ l n ( 4 u ( N ) )  + 4.65] 

up to order 1 / ( N )  for the two ensembles, while for the insulator, ordinary 
Poisson statistics ( (dN)  2) = ( N )  should be recovered. In other words, in 
the metallic phase the fluctuations are very small [ oz ( 1 / f l ) I n ( N ) ]  when 
compared ' to  the insulator (oc ( N ) ) ,  due to the presence of level repulsion 
in the former case. The logarithmic d-independent RMT expressions for a 
finite system should hold up to the mean value of ( N ( E r ) )  = E r / A  = g, 
where g is the conductance in units of e2/tz and E r  = h/r defines the charac- 
teristic Thouless energy, with r the time it takes for the electron to diffuse 
through the sample. The applicability of the RMT is restricted to the 
energies E ~ E r. The larger E >  E r denotes a nonergodic diffusive metallic 
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regime, which is unreachable in the infinite metallic system, where the num- 
ber variance scales as (E/ET) a/2 in d dimensions/8" 91 The insulating regime 
for systems of linear sizes L much larger than ~ can be understood from a 
random superposition of (L/~) d metallic subsystems of volume C a each, 
which results in independent Poisson statistics. 

An even more rigorous spectral fluctuation measure is the density- 
density correlation function Kz(e) which is appropriate to describe correla- 
tions of two energies at a distance e apart, by removing lower order corre- 
lations. It is also related to the probability of finding two eigenvalues with 
a distance e between them. The corresponding expressions for K2(e) are 
shown here to be approximated by the Wigner-Dyson RMT 16~ for the 
metal and to approach zero for the insulator. Apart from the general 
demonstration of the validity of the Wigner-Dyson and the Poisson 
statistics in the metallic and insulating limits, respectively, we obtain novel 
universal ((6N) 2) and K2(e) curves for the two TBRMEs at the critical 
point. These new distributions describe even more accurately the level den- 
sity fluctuations at the mobility edge. Moreover, our numerical scaling 
results are discussed according to a recent level statistical theory 1~2-~1 
which gives the asymptotics of ((6N) 2) and Kz(e) in the critical regime. 
It must be pointed out that although we deal with finite size systems our 
concern is the thermodynamic limit (L--, ~ )  where the only energy scale 
is A and the metallic, insulating and critical asymptotic distributions 
should characterize the level fluctuations. 

We proceed as follows: In Section 2 we introduce the orthogonal and 
symplectic matrix ensembles in the corresponding space dimensionalities. 
In Section 3 we show our results for P(S), ((~N)-') and K2(e ) in the 
metallic, insulating, and critical regimes for the orthogonal case in d =  3. 
Our exposition of the results for the statistical spectral fluctuation measures 
in the less-studied d=  2 spin-dependent symplectic case is undertaken in 
Section 4, also by using an alternative tranfer matrix scaling technique to 
locate the transition point. Finally, in Section 5 we discuss our results and 
derive the main conclusions drawn from our study. 

2. THE T I G H T - B I N D I N G  R A N D O M  M A T R I X  E N S E M B L E S  

The first kind of matrices where randomness plays an important role 
are the Gaussian random matrices. They were introduced in the context of 
nuclear physics by Wigner and Dyson 151 in order to replace complicated 
many-body Hamiltonians by ignoring the details and keeping only the 
correct symmetries. They can be classified according to symmetry into 
three universality classes, with the most common example that of real and 
symmetric matrices which correspond to the orthogonal case defined by the 
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GOE. The SOC causes a crossover to the symplectic universality class 
where the random matrices become spin-dependent complex Hermitian 
quaternion-like and correspond to the GSE. ~5~ The Gaussian random 
matrices have all the matrix elements as independent identically distributed 
random variables, chosen from a Gaussian probability distribution of mean 
zero and fixed variance. 

The GOE and GSE are exactly solvable for both the ensemble-averaged 
properties, such as the averaged density of states (p (E) ) ,  which for the 
G O E obeys a simple semicircle law, and also for the corresponding level 
fluctuations, e.g., the nearest-level spacing distribution function P(S) obeys 
the Wigner surmise. The GOE and GSE limits should be approached from 
the appropriate TBRMEs without and with SOC, respectively, only for 
d =  ~ when both the diagonal (e,,) and off-diagonal ( V,,. ,,,) matrix elements 
are random variables being, somehow, a mean-field limit of the TBRME. 
They can be also viewed as a zero-dimensional ergodic limit. However, for 
weak disorder, when the TBRME has random delocalized states, all the 
results from the GOE add GSE can carry through, reasonably explaining 
the measurable fluctuation phenomena in metallic conductors of size 
smaller than other characteristic decay lengths. 

2.1. The Spinless Orthogonal  Case in d = 3  

Anderson localization can be studied via the dimensionality-dependent 
TBRME. t~ In the absence of spin effects the TBRME consists of real and 
symmetric random matrices but of drastically different structure than those 
of the GOE. They are short-ranged and sparse, reflecting the finite range 
of the interactions and in d =  3 are defined by the Hamiltonian 

H =  ~ a,, In>(nl + ~ Is', .... In>(ml 1) 
n ,  r~ ( n ,  n l  ) 

where n labels all the L 3 sites of a three-dimensional lattice with linear size 
L, while the second sum is taken over all nearest neighbor pairs (n, m) on 
the lattice. 

In our calculations we deal with finite samples with periodic boundary 
conditiop~s and the spectrum of the exact electron states is discrete. The 
random on-site potential e,, denotes the diagonal disorder and is a uniformly 
distributed random variable, between - W/2 to W/2, while the off-diagonal 
matrix elements V, ..... are constant ( V,. m = 1). The Anderson transition for 
the E = 0  eigenfunctions occurs for a critical disorder Wc---16.5 in d =  3 
and the states become localized for W > W c. For a fixed amount of disorder 
W =  12 the critical energy (mobility edge) is at Ec ~ 7.8. ~ 16) 
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2.2. The Sp in -Dependent  Symplect ic  Case in d = 2  

For a two-dimensional disordered system which contains SOC for 
spin-l/2 particles ~v~ the TBRME can be defined by the Hamiltonian 

H = Z ~,, In, G><n, ~1 + ~ V,,,~',,, In, ~>(m,  ~'1 (2) 
n ,  a ( n ,  m )( or, a '  ) 

where n labels all the L 2 sites of the lattice and a = + 1/2 is the spin index, 
while the second sum is taken over all nearest neighbor lattice pairs (17, m). 
The spin-independent random on-site potential e,, denotes the diagonal 
disorder and is a uniformly distributed random variable chosen from a 
probability distribution of width W. 

The nearest neighbor hopping matrix elements V, ..... are randomly 
chosen 2 x 2 matrices describing spin rotation due to the SOC on every 
lattice bond (17, m). In the two-component spinor space they are represented 
by the quaternions 

1 + ip V: /z V-" + ilt V"~ 
V, ..... = j ( 3 )  

--ItV-" +i / tV"  l--ilzV-- / ..... 

where p denotes the SOC coupling and the V-", V-", and V: defined for 
every (n,m) are real and independent random variables chosen from a 
uniform probability distribution on the interval [1/2, +1/2] .  An alter- 
native model of SOC has been introduced and studied by Ando. ~8~ There 
is a rigorous proof that the model of Eq. (2) has localized states if the 
disorder strength W is strong when compared to the SOC coupling p.~,9~ 
The Anderson transition for a two-dimensional system with SOC was 
revealed in the numerical studies of refs. 17 and 18 and by an analytical 
renormalization group theory in ref. 20. 

3. THE O R T H O G O N A L  CASE 

3.1. P(S) Distr ibut ion Funct ion 

We determine this curve by a direct numerical scaling attack of the 
level statistics in finite cubic lattices described by Eq. (I)  of L 3 sites and 
Hamiltonian matrices of the same order. Our calculation relies on the 
numerical computation of the eigenvalues Ej in a very narrow window 
of states around E = 0 .  The finite random matrices are diagonalized by 
the Lanczos algorithm and the large-L behavior is achieved by allowing 
the size L 3 to vary from 63 to 123 for many random configurations (see 
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Table I). The spacing function P(S) can be numerically studied by con- 
sidering instead of Ej+, - Ej the distribution of the differences 

0 
( N(Ej+ ,) > - ( N(Ej) > = (Ej+ , -Ej)-~-~ ( N ( E ) >  

where (N(E)> is the averaged integrated DOS at the energy E. This is a 
well-known unfolding procedure for the spectrum and it is required for the 
average level spacing A to remain equal to unity and (p(E)> constant in 
the chosen window. 

Our numerical results for P(S) are shown in Fig. 1. For the delocalized 
phase (Fig. la) for W= 10 < IV,. the P(S) function is shown to approach 

Tablel .  Results for d = 3  wi thout  SOC 

Number of Number of 
Size ( L ) runs eigenvalues ), zl E (window) 

W=IO 

6 60,000 592,755 0.092 0.054 0.0-0.55 
8 10,000 106,676 0.085 0.023 0.0-0.25 

I 0 7,205 78,000 0.090 0.012 0.0-0.13 
12 13,980 160,807 0.084 0.007 0.0-0.08 

W = I 6 ~  W,. 

6 50,000 558,894 0.306 0.077 0.0-0.90 
8 33,510 365,223 0.312 0.033 0.0-0.37 

10 17,589 182,307 0.309 0.017 0.0-0.18 

W= 16.5 ~ IV,. 

6 88,121 960,727 0.333 0.079 0.0-0.90 
8 10,000 106,115 0.352 0.033 0.0-0.37 

10 15,515 156,922 0.346 0.017 0.0-0.18 
12 18,274 194,945 0.349 0.010 0.0-0.11 

W= 30 

6 45,468 448,120 0.760 0.131 0.0-1.40 
8 10,000 106,557 0.808 0.055 0.0-0.64 

10 14,088 142,195 0.837 0.028 0.0-0.31 
12 15,278 145,995 0.891 0.016 0.0-0.17 

W= 12 (E,.~ 7.8) 

8 129,805 664,445 0.266 0 . 0 7 0  7.60-8.00 
10 76,790 572,320 0.326 0.038 7.65-7.95 
12 44,600 551,852 0.363 0.023 7.65-7.95 
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Fig. 1. The calculated level-spacing distribution function for the unfolded data for different 
system sizes and various disorder strengths corresponding to (a-d) W= 10, 16, 16.5, and 30, 
with the rest of the parameters taken from Table I. The broken line is the Wigner surmise 
(approached as L--*oo in the delocalized limit) and the dotted line is the Poisson law 
(approached as L ---, c~ in the localized limit). The critical scale invariant curve is shown in cases 
(b) and (c) together with the corresponding analytical best fit from Eq. (4) with B~2.32, 
A ~ 1.30, and ~ 1.45 for W= 16.0 and B~2.46, A ~ 1.38, and ~ 1.38 for W= 16.5, respec- 
tively. (e) Plot of the critical P(S) when the mobility edge lies outside the band center at E,. ~ 7.8 
for W= 12, together with the analytical best fit of Eq. (4) with B ~ 2.52, A ~ 1.41, and ~ -~ 1.37. 
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rapidly the Wigner surmise law as a function of the system size. In the 
localized phase for W =  30 > W,. (Fig. ld) we find that our results resemble 
a displaced Wigner-like curve, but they show a tendency to move toward 
the Poisson distribution as the size L increases, although only asymptoti- 
cally for sizes much larger than the localization length. At the mobility edge 
(E, .=0 in this case) we obtain within numerical errors a size-independent 
universal scale invariant P(S)  function which interpolates between the 
Wigner and Poisson limits/~o, 2~ The results for the critical case are shown 
in Figs. lb and lc for the values W= 16 and W =  16.5, respectively. The 
scaling parameter 7 introduced in ref. 10 is shown (Table I) to remain 
approximately constant at the critical point. The need for considering two 
estimates for the critical disorder arises from the fact that an uncertainty 
exists; for example, from a scaling approach using level statistics a IV,. 
value was obtained that was slightly smaller than 16.5 obtained by the 
transfer matrix method) 22~ Despite the various sources of numerical errors, 
already apparent in Fig. lb and lc a reasonable overall fit of the data to 
the suggested analytical interpolation form ~12-~s~ 

P( S) = B S  exp( - A S  ~) (4) 

gave e ~  1.38 and 1.45 (see also ref, 21) for W =  I6.5 and 16, respectively. 
We observe that the exponent e is close to the estimate 1 + 1/(vd)=4/3 
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predicted from the theory 1~2-~5~ where the localization length critical expo- 
nent is v = 1 taken from the first-order e expansion estimate and d =  3 is 
the space dimensionality. The well-established v ~  1.4 numerical transfer 
matrix scaling value gives slightly smaller values than 4/3. The X 2 values for 
the critical P(S) gave small values (around 2), which suggest good quality 
of the corresponding fits. However, fits of the less accurate data in the tail 
of the critical P(S) distribution gave values for c( closer to unity, which 
could imply an almost Poissonic behavior for very large S. ~2~1 

In order to check the validity of the asymptotic critical curve of Eq. 
(4) we also consider restricted energy ranges near the mobility edge when 
it lies outside the band center E = 0  for a fixed amount of disorder. In 
Fig. le we show our scaling results for the case of W = 12 together with the 
analytical fit of Eq. (1), near the mobility edge, which lies at E,. = 7.8 _+ 
0.1.116) Although the main features of this distribution are also established 
by the fit of Eq. (4) which gave ~ ~ 1.37, it must be pointed out that from 
the quality of the fit we cannot exclude an even more complicated form of 
the critical P(S). 

3.2. Number Variance <(6N)a> 

We have also obtained results for <(fiN(E))2> = <N(E)2> - <N(E)>-', 
which characterizes the stiffness of the spectrum by measuring the fluctua- 
tions of the number of eigenvalues N(E) in a given energy window E. In 
Fig. 2a we plot ( (~N(E)) ' - )  versus ( N ( E ) ) ,  for eigenvalues obtained in the 
energy windows defined in Table 1, together with the logarithmic Wigner- 
Dyson GOE limitJ 6~ We can again distinguish three cases corresponding to 
the metal, insulator, and critical point, respectively. In the metallic case 
( W =  10) the results are seen to rapidly reach the analytic Wigner expres- 
sion for small (N(E)) ,  starting to deviate at a value of ( N ( E T ) )  which 
defines the Thouless energy E r  for the finite system. In the localized 
phase ( W = 3 0 ) ,  instead, our result slowly approach the Poisson limit 
( (fiN(E) ) ~-) = ( N(E) ) ( see also Fig. 2b ) which implies uncorrelated levels. 

In the critical case the data for different system sizes converge, at least 
for the smaller ( N ( E ) ) ,  to a universal curve. From recent analytic results ~51 
one expects the asymptotic law 

((fiN(E))'-) =A(N(E) )  +B(N(E) )  z-~, A, B = const (5) 

for (N(E))  >> 1, which also includes the dominant linear term. A fit of the 
data to the non-linear part alone, believed to be due to a sum rule which 
was shown to be invalid for the infinite system, ~ 15~ previously gave ~ values 
not very far from unity, in agreement with an almost exponential taill2~ for 
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Fig. 2. (a) The calculated number variance distr ibut ion function for the same parameters as 
in Fig. 1 taken from Table I. The corresponding continuous line is the result for the Oaussian 
orthogonal ensemble (GOE),  which should apply to the metallic phase. It must  be also noted 
that for the localized ( W =  30) case the data for the different system sizes go toward the 
Poisson limit ( (SN) 2) = ( N ) .  (b) The same as in (a), but the data are displayed by plotting 
the ratio ((SN)2)/(N) vs. ( N ) ,  so that the Poisson limit is 1. (c) The same as in (a), but 
including the case of W,.= 16 instead of 16.5. 
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the P(S) if S >> 1. In Fig. 2b we plot our data in a different way in order 
to show the ( N )  dependence of the ratio ((6N(E))Z)/(N(E)), which 
varies weakly with ( N )  and approaches a constant ratio A in the critical 
case. Moreover, our main conclusions drawn from Figs. 2a and 2b remain 
valid by taking W =  16 as the critical disorder (Fig. 2c) and also near the 
mobility edge when it lies outside the band center. 

3.3, Two-Point  Correlation Function Kz(E ) 

The two-point density-density correlation is a function of the relative 
distance e between any two eigenvalues in units of A, not necessarily 
nearest neighbors, via 

(p(E) p(E + e) ) 
g2(e) = 1 (6) 

(p(E))<p(E+e)> 

where p(E) is the one-electron DOS for one realization of the disorder and 
( . . . )  denotes ensemble average over many realizations. K~_(e) as defined in 
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Fig. 3. The calculated two-point density correlation function for different system sizes in a 
log-log plot for various disorder strengths and parameters from Table I. The corresponding 
continuous line is the result for the Gaussian orthogonal ensemble (GOE),  which applies to 
the metallic phase [Eq. (7)]. (b,c) The critical intermediate curve. 
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Eq. (6) measures departures from the uncorrelated systems and for a 
metallic system we expect the GOE result ~61 

_ (sin *re~-_(f=sin )'d), *r')(cos,re sin*re' / 
K d e ) - - \  *re / kJo .I; - 2 J \  ns (*re)2J ' 

e > 0  (7) 

with K2(- -e )  =K2(e) and K2(0)= 1. For  the insulating phase the correla- 
tions vanish, so that for L-+ ov the limit 

K2(e) = 0 (8) 

should be reached. K2(e) can be directly computed from the numerical 
data, within the chosen energy window, by fixing a finite small energy box 
for the origin E (of width 0.1A) and measuring the reduced probability via 
Eq. (6) in another box at a distance E+e. In order to improve the statistics 
we considered several values for the origin E and performed an average 
over the statistical ensemble. The results shown are obtained for the 
unfolded levels, although the averaged DOS (p(E)) is already almost con- 
stant in the chosen energy window. 

The numerical data for K2(e) are displayed in Fig. 3. In the metallic 
phase they almost coincide with the GOE result, particularly for small e 
(Fig. 3a), and for the insulator there is a slow crossover toward the zero 
correlation limit for increasing system size (Fig. 3d). In Fig. 3b and 3c we 
show intermediate scale-invariant curves which are obtained at the critical 
point. We should emphasise that K2(e) should fall with an inverse square 
power law e -2 for the metal and according to the statistical theory of 1~2-t5~ 
in the critical case K2(e) oc e -~, with the previously found exponent ~ also 
governing this asymptotic large-e decay. We cannot obtain c~ from our data 
because our window is too small to reach the very large e regime. 

4. THE S Y M P L E C T I C  CASE 

4.1. The M e t a l - I n s u l a t o r  Transi t ion  

Before we undertake the level statistical study for the two-dimensional 
symplectic system we perform transfer matrix calculations ~2s~ in order to 
determine the critical disorder value for energies close to the band center. 
We consider very long strips of length 5 x 10 5 to 10 6 and vary the per- 
pendicular width M. For fixed M we obtain the spectrum of the converged 
Lyapunov exponents yj with j = 1, 2 ..... M from the corresponding random 
transfer matrix product. 1~6~ Since all the states are localized for the finite 
system in the adopted quasi-one-dimensional strip geometry, the pairwise 
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degenerate positive exponents yj are different from zero. Their inverses y f t  
define a hierarchy of localization lengths and we focus on the smallest 
exponent y~, which corresponds to the dominant transmission channel with 
the largest localization length ~M=yi -~ If the states are localized, the 
localization length is obtained from the limit ( = l i m M _ ~  ~ while for 
extended states it is expected to diverge (( ~ ~) .  The renormalized length 
~ / M  should decrease or increase by increasing M for the localized and 
extended cases, respectively. At the critical point W = W,. we obtain a scale- 
invariant fixed-point value (~M/M)* for every M only for the p = 2  case, 
which confirms the presence of an Anderson transition for finite SOC in 
d = 2 with the absence of a transition for p = 0. The critical disorder value 
was found by this method to be Wc = 8.55_ 0.05J TM 

In order to display the transition in Figs 4a and 4b we present all the 
Lyapunov exponents yj for various values of M normalized dividing by 
their respective mean value (y )  = (l/M) ~j  yj. It is seen that the minimum 
exponent whose inverse gives ~ approaches zero for W< W, and remains 
finite for W> Wc when p -- 2, while for p = 0 it is finite for any W. In other 
words, a gap in the corresponding Lyapunov spectrum which includes both 
the positive and negative exponents opens up in the middle of the spectrum 
having asymptotic width 2/( for any W without SOC and only for W> W,. 
for finite SOC, indicating the transition in the latter case. The critical disor- 
der value in the finite SOC case is also shown in Fig. 4b. 

4.2. P(S) D i s t r i b u t i o n  Funct ion  

We are now in a position to derive the level statistics for finite squared 
lattice systems with SOC of strength p = 2  described by Eq. (2). We 
numerically compute the eigenvalues Ej around E = 0 for lattices of L 2 sites 
and many random configurations by ignoring Kramer's degeneracy. The 
finite-size (2L 2) • (2L 2) symplectic random matrices are diagonalized and 
the large-L behavior is achieved by allowing the matrix size to vary from 
2.8 2 to 2.16 2 (see Table II). We again considered the unfolded spacings 
(N(Ei+,))--(N(EA), where the averaged IDOS (N(E)) is computed 
within the adopted energy range at a few points and then found at many 
points by cubic interpolation, in order to obtain the unfolded levels 
(N(Ei)). The P(S) distribution with S=(N(Ei+t))--(N(EA) satisfies 
the constant DOS requirement A = 1. 

We find that as L increases, our results move toward the corresponding 
Wigner surmise in the delocalized phase (W< We) and the Poisson law in 
the localized limit (W> We), respectively. In Fig. 5a for the delocalized 
ease of W= 6 the P(S) function is shown to move toward the symplectic 
Wigner surmise, while in the localized phase for W= 12 (Fig. 5c) our 
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Number of Number of 
Size (L) runs eigenvalues LI E (window) 

w=6 

8 35,000 1,220,273 0.171 -3.0 to 3.0 
12 11,000 862,889 0.076 -3.0 to 3.0 
16 19,446 2,710,937 0.043 --3.0 to 3.0 

W= 8.55 ~ W~ 

8 10,000 309,531 0.193 -3.0 to 3.0 
12 9,000 627,330 0.086 -- 3.0 to 3.0 
16 14,273 1,767,874 0.048 --3.0 to 3.0 

W=I2 

8 40,378 1,048,029 0.229 -- 3.0 to 3.0 
12 13,023 760,821 0.102 -3.0 to 3.0 
16 16,683 1,732,856 0.058 -3.0 to 3.0 

system sizes are too small with respect to the corresponding localization 
lengths to reach the Poisson limit, although the data clearly have a 
tendency to move toward the Poisson distribution as a function of the 
system size. The speed of approach can be improved if the system sizes 
become larger or the adopted disorder stronger. 

At the mobility edge there also should exist an L-independent univer- 
sal scale-invariant P(S)  function approximated by the formula 

P(S) = BS 4 exp( - A S  ~ (9) 

which interpolates between the two limits. Our data for this intermediate 
P(S) are shown in Fig. 5b and it should be noted that they give the profile 
of a function which has most of the features already established for the 
three-dimensional spinless critical case (Figs lb, lc, and le), but with a 
quartic behavior ( f l = 4 )  for small S due to the symplectic nature of the 
random matrices. The critical P(S) is closer to the GSE result and passes 
very near . the point S ~  1.63 where the Wigner and the Poisson cross. 
Previous overall fit of the data to the suggested analytical form of Eq. (9) 
gave B~22.35,  A ~3.02, and for the exponent ~ 1.60 ___ 0.05. (a3~ This 
value is very different from the estimate 1 + 1/(vd), which if adopted would 
imply v~0.83 in d = 2 .  Although the computed Xa~ 13 for L =  16 and 
X 2 ~ 14 for L = 12 are less than the expected values, suggesting a good fit 
for the smaller S, we cannot exclude a different, more complicated form of 
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Fig. 5. The calculated level-spacing distribution function for disorder strengths corresponding 
to (a-c) W =  6, 8.55, and 12 with the parameters from Table II. The broken line is the Wigner 
surmise (approached as L ~ co in the delocalized limit) and the dotted line is the Poisson law 
(approached as L --* co in the localized limit). The critical scale-invariant curve is shown in (b) 
with the corresponding best fit to Eq. (9). Our  results for the tail of tile critical P(S) are dis- 
played in the inset of (b) .  
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the critical P(S). For this purpose we have also attempted a linear fit of 
In P(S) in the far tail (see inset), where our data have bigger errors. It is 
seen that a simple exponential P ( S ) o c e x p ( - A S )  can also provide a good 
fit for the region 1.5 < S < 4.0 and for the largest size considered we obtain 
A ~3.71 with Z-' ~9 .  

4.3. Number  Var iance ( ( 6 N ) 2 >  

Our scaling results for the number variance ( ( f N ( g ) )  2 )  vs.  (N(E)) 
are shown in Fig. 6. We can again distinguish three regimes corresponding 
to the metal, insulator, and critical point, respectively. In the metallic 
case the results are close to the analytic symplectic Wigner expression for 
small (N(E)) and the point of deviation gives the Thouless energy ET, 
which defines a conductance smaller than that for the corresponding d =  3 
case. In the localized phase the scaling data should slowly approach the 
((fiN(E))- ' )  = ( N ( E ) )  Poisson limit. However, we find a much slower 
approach to this limit when compared to d =  3 and our data show an inter- 
mediate nonlinear growth (N(E)) 3/4. In the critical regime the data for 
different system sizes converge within numerical accuracy and for the larger 
(N(E)) to the same asymptotics as for the localized case. 
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Fig. 6. The calculated number variance distribution function for the same parameters as in 
Fig, 5 from Table II. The corresponding continuous line is the result for the Gaussian sym- 
plectic ensemble (GSE), which should apply to the metallic phase. 
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In Fig. 6b we plot the raw data before unfolding for the number 
variance in the whole energy range, up to the band edges, starting from 
E = 0 .  We also see the intermediate nonlinear growth for large (N(E)>, 
which is probably a finite-size effect due to the choices of disorder made 
and the rather small sizes considered. This feature should disappear in 
the aymptotic limit, leading eventually to a linear Poisson law also for 
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Fig. 7. The calculated two-point density correlation function for different system sizes in a 
log-log plot for various disorder strengths and parameters from Table II. The corresponding 
continuous line is the GSE result [Eq. (10)], which should apply to the metallic phase. 
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4.4. Two-Point  Correlation Function K 2 ( E  ) 

The density correlation function for the GSE is 

(sin2ne'~ 2 (cos2=e sin2zte'~ f2'~'sin), 
K,_(e) = \ 2he J - \ 2~-~e (2/Ze) 2 J J0 y dy (10) 

with K2(0)= 1, and this result is expected to hold in the metallic phase. In 
Fig. 7a we observe a slow crossover of Kz(e) toward the GSE result and in 
Fig. 7c toward the zero value, indicating the absence of correlations in the 
latter case. It must be pointed out that in the localized case from the 
adopted disorder W= 12 and the L values considered our data cannot 
reliably demonstrate the zero-correlation limit. For  example, at e close to 
0 correlations still remain in this case, which is similar to the linear P(S) 
found for small S for the localized case shown in Fig. 5c. These features are 
clearly finite-size effects and K,_ for small e will decrease if larger sizes are 
taken, eventually approaching zero for the infinite system. At the critical 
point an intermediate curve is shown in Fig. 7b which also differs from 
its d =  3 analogue, since the small-e behavior follows more closely the 
corresponding RMT result in the form of GSE when compared to 
the corresponding GOE case. t23) 
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5. D I S C U S S I O N  A N D  C O N C L U S I O N S  

We have presented a complete level statistical study, including the 
spectral rigidity which has further physical consequences, for two time- 
reversal invariant TBRMEs defined in two- and three-dimensional lattices 
with and without SOC, respectively. The metal-insulator transition is also 
demonstrated in the finite SOC case which corresponds to the symplectic 
universality class in d--2. Numerical results for finite lattices of different 
sizes are derived in both cases for the nearest level spacing distribution 
function P(S), the number variance ((SN) 2) and the two-point correlation 
function K2(e). In the metallic regime ( W< W,.) for small energies less than 
the Thouless energy E r the results are shown to be closely approximated 
by the GOE and GSE for the two statistical ensembles, respectively. This 
confirms previous analytical results for weakly disordered small metallic 
systems, ~24~ where level correlations similar to the quantum chaotic GOE 
and GSE results are found, suggesting a universal validity of the RMT for 
disordered metals. In the strong-disorder limit (W> W,,) the electrons 
localize and the correlations between the levels diasappear, leading to inde- 
pendent Poisson statistics. However, this is more difficult to obtain numeri- 
cally for small sizes, although the corresponding trends are clearly 
demonstrated. We have also obtained new curves at the critical boundary 
(W= IV,) which are discussed with respect to recent theories. 

In conclusion, we have shown by numerical scaling methods many 
interesting level statistical fluctuation properties for disordered metals in 
the tight-binding approximation. These systems provide physical realiza- 
tions of the orthogonal and symplectic symmetries defined within the usual 
Wigner-Dyson RMT and offer the possibility of estimating measurable 
universal symmetry dependences. We have confirmed that the orthogonal 
and symplectic systems studied display metallic behavior described by the 
GOE and GSE, respectively, but at the disorder-induced metal-insulator 
transition the two ensembles show certain differences particularly for 
((5N) 2) and K2(e). An obvious extension of the present work is to con- 
sider the three-dimensional SOC case in order to check the suggested 
universality, especially for the critical case, or other symmetry-breaking fac- 
tors such as the presence of Andreev scattering/2sl 
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